Enrollment and Security Assessment of LoRaWAN Networks

Fraunhofer AISEC - Hardware Security Department

Florian Jakobsmeier florian.jakobsmeier@aisec.fraunhofer.de

Munich, March 20, 2019

About Me

- Student at Technical University of Munich
- Master Informatics 4th semester
- HiWi at Fraunhofer AISEC
 - Hardware Security Department
- LoRaWAN evaluation as research project

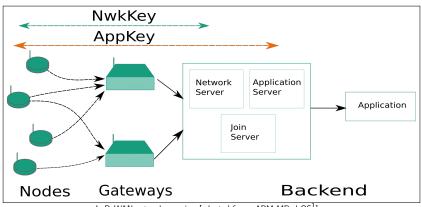
What?

• Why?

How?

- What?
 - Sensor networks for private and professional usage
 - LoRaWAN as one popular sensor network protocol
 - Networks send data that needs protection
- Why?

How?


- What?
 - Sensor networks for private and professional usage
 - LoRaWAN as one popular sensor network protocol
 - Networks send data that needs protection
- Why?
 - ullet Wireless network o multiple attack vectors
 - ullet Network enrollment o introduce attack vectors
 - Public interest in LoRaWAN: Linux Kernel, Stadtwerke München, . . .
 - How to secure a network against powerful attacker?
- How?

- What?
 - Sensor networks for private and professional usage
 - LoRaWAN as one popular sensor network protocol
 - Networks send data that needs protection
- Why?
 - ullet Wireless network o multiple attack vectors
 - ullet Network enrollment o introduce attack vectors
 - Public interest in LoRaWAN: Linux Kernel, Stadtwerke München, . . .
 - How to secure a network against powerful attacker?
- How?
 - → Enroll and evaluate LoRaWAN network

Project Goal

- Evaluate LoRaWAN regarding its security aspects
 - Setup a LoRaWAN network
 - Evaluate security of:
 - Protocol
 - Software
 - Hardware
 - Enrollment process

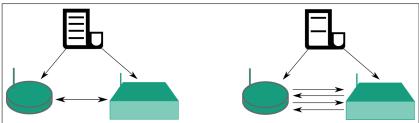
LoRaWAN Basics

LoRaWAN network overview [adapted from: ARM MBed OS1]

https://os.mbed.com/docs/v5.8/reference/building-your-own-private-loranetwork html

¹Building your own private LoRa network.

LoRaWAN Basics


- Different versions: IDP with v1.1
- Established encryption algorithms: AES-128-{CTR|CMAC}
- Nested security with distinct root keys
 - Network key: integrity protected network data
 - Application key: encrypted application data
- Restricted downlink connection
 - Dependens on node class
 - Class A: listen after send, Class B/C: listen regularly

LoRaWAN Network Join

Differentiate: static ↔ dynamic join

LoRaWAN

- Activation by personalization (ABP): all security credentials stored on device
- Over the air activation (OTAA): root keys on device, everything else established dynamically
- Re- Ioin
 - Node re-joins the network \rightarrow new keys, new counter, ...

LoRaWAN join: ABP vs. OTAA

Network Setup

- Plenty of software and hardware found online
 - Mostly outdated, not supported, not guarantied to work in future
- TheThingsNetwork (TTN) community strives to push LoRaWAN usage
 - Provides: Software and Hardware
 - Most referenced resource provider
 - Most used implementation of LoRaWAN software
- → Use TTN hardware and software as reference point

Protocol

- Use of established algorithms
- Key Management recomendations
 - No key update enforced
 - Possible with Re-Join
- Security as one protocol goal
 - Split root keys from v1.0 to v1.1
 - Many recommendations, but no enforcements
- → LoRaWAN protocol well thought out
- → Security as one update focus

Node Setup

- TheThings Node
- Supports multiple sensors
 - Light-
 - Temperature-
 - Acceleration-
- Stores root and session keys
- Accessible by attacker

TheThings Node [TheThingsNetwork²]

²https://www.thethingsnetwork.org/docs/devices/node/

Node Security

- Secure storage is recommended
 - Might not be supported by hardware
 - Easiest and most used solution: store in binary
- Setup nodes with same keys
- Active debug interface
 - Secret credentials printed in plaintext
- Random Number Generator:
 - Suitable for cryptographic purposes?
 - Influenceable by attacker
- Mbed OS node emulator
 - Credentials storage unknown

"APP KEY[]" lorawan

Repositories

Commits

Issues

Marketplace

char APP EUI[] = "70

Search

C++

Sort: Best match -


```
<sub>0</sub> 5,789 code results
```

```
5K
```



```
Indiana if (error != 0)

Florian Jakobsmeier florian, iakobsmeier@aisec. fraunhofer.de
```

AC";

Node Security

- Secure storage is recommended
 - Might not be supported by hardware
 - Easiest and most used solution: store in binary
- Setup nodes with same keys
- Active debug interface
 - Secret credentials printed in plaintext
- Random Number Generator:
 - Suitable for cryptographic purposes?
 - Influenceable by attacker
- Mbed OS node emulator
 - Credentials storage unknown

Gateway Setup

- TheThingsNetwork Gateway
- Plug-and-Play solution
- Register gateway in the backend
- Activation over WiFi
 - Gateway opens Access Point with default password
 - Connection secured with WPA2

TheThings Gateway [TheThingsNetwork³]

³https://www.thethingsnetwork.org/docs/gateways/gateway/

Gateway Security

- Stores gateway key
 - Hardware supported key storage?
 - Key storage on TTN Gateway in binary
- Active debug interface
- Gateway activation using WiFi
 - Not changeable default password
 - Send data not secured otherwise
 - → Attack on WPA2 with known PW possible

Backend Setup

- TTN backend gets recommended
- Node-, Gateway- and Application management
- Key and UID generation for all devices
- Hosted on TTN server
- Data access with TTN access token
 - Message Queue Telemetry Transport (MQTT) Protocol
 - NodeRed

Application type and access in LoRaWAN network

Backend Security

- Hosted in cloud
 - Security unknown
 - Access to security credentials unknown
 - ullet Open Source Software o build and host backend on own server

- Connection NS ↔ AS assumed trusted
 - Not necessarily on same device
 - Worst Case: distinct devices, unsecured connection
 - Security on TTN servers not known
- RNG source not known
 - No information about nonce quality
- Backend data access
 - NodeRed: default access via network not secured
 - MQTT: backend credentials in source code

Attacks on LoRaWAN

- Replay attack
 - No freshness check for Join Accept message
- Jamming
 - Simple: jam frequency
 - Elaborated: e.g. selective jamming
- Key extraction
 - Credentials stored in plaintext in unprotected memory
- RNG
 - Source: traffic on different frequencies
 - Jamming attack: influence nonce values
- Downgrade attacks
 - LoRaWAN specifies backwards compatibility
 - End-Device falls back to lower version
 - Old attack vectors are valid again

Impact on your Network

- Unsafe key storage
 - Stored in: source code or unsafe memory
 - Key extractable \rightarrow attacker gains controll over network
- Active debug interfaces
 - Simple key extraction
- Shared secret key
 - One compromised node → effect on whole network
- Jamming (simple and elaborated)
 - Network operation prevented
- Unsafe backend connection
 - (Secrect) Data extractable from traffic
- Random source not suitable or influenced by attacker
 - Encryption can be broken easier

Future Work

- Secure Firmware-over-the-Air (FOTA) support
- Secure key storage on device
 - LoRaWAN recommends secure storage
 - Often keys stored in binary
 - E.g.: Esp32 Flash Encrypt
- Further security checks on working network
 - WiFi access point open → entrypoint for an attacker?

Conclusion

- LoRaWAN as one example of sensor network protocols
 - Protocol well thought out
 - LoRaWAN assumed cryptographically secure
- Evaluated reference network
 - Few design issues
 - User errors can enable attack
- Keep common security issues in mind
 - Key management is hard
 - Physical attacks are a threat
 - Select hardware with security mechanisms
 - Consult experts for security concerns